|
Mars Surface
|
The lack of a magnetosphere and extremely thin atmosphere of Mars are a challenge: the planet has little heat transfer across its surface, poor insulation against bombardment of the solar wind and insufficient atmospheric pressure to retain water in a liquid form (water instead sublimates to a gaseous state). Mars is also nearly, or perhaps totally, geologically dead; the end of volcanic activity has apparently stopped the recycling of chemicals and minerals between the surface and interior of the planet.
Evidence suggests that the planet was once significantly more habitable than it is today, but whether living organisms ever existed there remains unknown. The Viking probes of the mid-1970s carried experiments designed to detect microorganisms in Martian soil at their respective landing sites and had positive results, including a temporary increase of CO2 production on exposure to water and nutrients. However, this sign of life was later disputed by some scientists, resulting in a continuing debate, with NASA scientist Gilbert Levin asserting that Viking may have found life. A re-analysis of the Viking data, in light of modern knowledge of extremophile forms of life, has suggested that the Viking tests were not sophisticated enough to detect these forms of life. The tests could even have killed a (hypothetical) life form. Tests conducted by the Phoenix Mars lander have shown that the soil has a very alkaline pH and it contains magnesium, sodium, potassium and chloride. The soil nutrients may be able to support life but life would still have to be shielded from the intense ultraviolet light.
At the Johnson space center lab, some fascinating shapes have been found in the Martian meteorite ALH84001. Some scientists propose that these geometric shapes could be fossilized microbes extant on Mars before the meteorite was blasted into space by a meteor strike and sent on a 15 million-year voyage to Earth. However, an exclusively inorganic origin for the shapes has also been proposed.
Small quantities of methane and formaldehyde recently detected by Mars orbiters are both claimed to be hints for life, as these chemical compounds would quickly break down in the Martian atmosphere. It is remotely possible that these compounds may instead be replenished by volcanic or geological means such as serpentinization.
|
|