|
First Space Blogger, Maxim Suraev, Russia
|
Interplanetary
Interplanetary space, the space around the Sun and planets of the Solar System, is the region dominated by the interplanetary medium, which extends out to the heliopause where the influence of the galactic environment starts to dominate over the magnetic field and particle flux from the Sun. Interplanetary space is defined by the solar wind, a continuous stream of charged particles emanating from the Sun that creates a very tenuous atmosphere (the heliosphere) for billions of miles into space. This wind has a particle density of 5–10 protons/cm3 and is moving at a velocity of 350–400 km/s. The distance and strength of the heliopause varies depending on the activity level of the solar wind. The discovery since 1995 of extrasolar planets means that other stars must possess their own interplanetary media.
The volume of interplanetary space is an almost pure vacuum, with a mean free path of about one astronomical unit at the orbital distance of the Earth. However, this space is not completely empty, and is sparsely filled with cosmic rays, which include ionized atomic nuclei and various subatomic particles. There is also gas, plasma and dust, small meteors, and several dozen types of organic molecules discovered to date by microwave spectroscopy.
Interplanetary space contains the magnetic field generated by the Sun. There are also magnetospheres generated by planets such as Jupiter, Saturn and the Earth that have their own magnetic fields. These are shaped by the influence of the solar wind into the approximation of a teardrop shape, with the long tail extending outward behind the planet. These magnetic fields can trap particles from the solar wind and other sources, creating belts of magnetic particles such as the Van Allen Belts. Planets without magnetic fields, such as Mars and Mercury, but excluding Venus, have their atmospheres gradually eroded by the solar wind.
|
|