trezor.io
Rate this file (Rating : 5 / 5 with 1 votes)
earth from space
trezor.io

Earth From Space

Konstantin Tsiolkovsky was the first person to realize that, given the energy available from any available chemical fuel, a several-stage rocket would be required. The escape velocity to pull free of Earth's gravitational field altogether and move into interplanetary space is about 11,000 m/s (39,600 km/h; 24,600 mph) The energy required to reach velocity for low Earth orbit (32 MJ/kg) is about twenty times the energy required simply to climb to the corresponding altitude (10 kJ/(km·kg)).
There is a major difference between sub-orbital and orbital spaceflights. The minimum altitude for a stable orbit around Earth (that is, one without significant atmospheric drag) begins at around 350 kilometres (220 mi) above mean sea level. A common misunderstanding about the boundary to space is that orbit occurs simply by reaching this altitude. Achieving orbital speed can theoretically occur at any altitude, although atmospheric drag precludes an orbit that is too low. At sufficient speed, an airplane would need a way to keep it from flying off into space, but at present, this speed is several times greater than anything within reasonable technology.
A common misconception is that people in orbit are outside Earth's gravity because they are "floating". They are floating because they are in "free fall": they are accelerating toward Earth, along with their spacecraft, but are simultaneously moving sideways fast enough that the "fall" away from a straight-line path merely keeps them in orbit at a constant distance above Earth's surface. Earth's gravity reaches out far past the Van Allen belt and keeps the Moon in orbit at an average distance of 384,403 kilometres (238,857 mi).

File information
Filename:237957.jpg
Album name:Earth & Universe
Rating (1 votes):55555
Keywords:#earth #space
Filesize:83 KiB
Date added:Feb 16, 2010
Dimensions:700 x 700 pixels
Displayed:10 times
URL:displayimage.php?pid=237957
Favorites:Add to Favorites