|
Exploring Astronomy Photography Of Outer Space Universe
|
Other observations are not answered definitively by known physics. According to the prevailing theory, a slight imbalance of matter over antimatter was present in the universe's creation, or developed very shortly thereafter, possibly due to the CP violation that has been observed by particle physicists. Although the matter and antimatter mostly annihilated one another, producing photons, a small residue of matter survived, giving the present matter-dominated universe. Several lines of evidence also suggest that a rapid cosmic inflation of the universe occurred very early in its history (roughly 10−35 seconds after its creation). Recent observations also suggest that the cosmological constant (Λ) is not zero and that the net mass-energy content of the universe is dominated by a dark energy and dark matter that have not been characterized scientifically. They differ in their gravitational effects. Dark matter gravitates as ordinary matter does, and thus slows the expansion of the universe; by contrast, dark energy serves to accelerate the universe's expansion.
• Multiverse theory
Some speculative theories have proposed that this universe is but one of a set of disconnected universes, collectively denoted as the multiverse, challenging or enhancing more limited definitions of the universe. Scientific multiverse theories are distinct from concepts such as alternate planes of consciousness and simulated reality, although the idea of a larger universe is not new; for example, Bishop Étienne Tempier of Paris ruled in 1277 that God could create as many universes as he saw fit, a question that was being hotly debated by the French theologians.
Max Tegmark developed a four part classification scheme for the different types of multiverses that scientists have suggested in various problem domains. An example of such a theory is the chaotic inflation model of the early universe. Another is the many-worlds interpretation of quantum mechanics. Parallel worlds are generated in a manner similar to quantum superposition and decoherence, with all states of the wave function being realized in separate worlds. Effectively, the multiverse evolves as a universal wavefunction. If the big bang that created our multiverse created an ensemble of multiverses, the wave function of the ensemble would be entangled in this sense.
|
|