trezor.io
Rate this file (Rating : 5 / 5 with 1 votes)
exploring astronomy photography of outer space universe
trezor.io

Exploring Astronomy Photography Of Outer Space Universe

The prevailing Big Bang model accounts for many of the experimental observations, such as the correlation of distance and redshift of galaxies, the universal ratio of hydrogen:helium atoms, and the ubiquitous, isotropic microwave radiation background. As noted, the redshift arises from the metric expansion of space; as the space itself expands, the wavelength of a photon traveling through space likewise increases, decreasing its energy. The longer a photon has been traveling, the more expansion it has undergone; hence, older photons from more distant galaxies are the most red-shifted. Determining the correlation between distance and redshift is an important problem in experimental physical cosmology.
Other experimental observations can be explained by combining the overall expansion of space with nuclear and atomic physics. As the universe expands, the energy density of the electromagnetic radiation decreases more quickly than does that of matter, since the energy of a photon decreases with its wavelength. Thus, although the energy density of the universe is now dominated by matter, it was once dominated by radiation; poetically speaking, all was light. As the universe expanded, its energy density decreased and it became cooler; as it did so, the elementary particles of matter could associate stably into ever larger combinations. Thus, in the early part of the matter-dominated era, stable protons and neutrons formed, which then associated into atomic nuclei. At this stage, the matter in the universe was mainly a hot, dense plasma of negative electrons, neutral neutrinos and positive nuclei. Nuclear reactions among the nuclei led to the present abundances of the lighter nuclei, particularly hydrogen, deuterium, and helium. Eventually, the electrons and nuclei combined to form stable atoms, which are transparent to most wavelengths of radiation; at this point, the radiation decoupled from the matter, forming the ubiquitous, isotropic background of microwave radiation observed today.
Other observations are not answered definitively by known physics. According to the prevailing theory, a slight imbalance of matter over antimatter was present in the universe's creation, or developed very shortly thereafter, possibly due to the CP violation that has been observed by particle physicists. Although the matter and antimatter mostly annihilated one another, producing photons, a small residue of matter survived, giving the present matter-dominated universe. Several lines of evidence also suggest that a rapid cosmic inflation of the universe occurred very early in its history (roughly 10−35 seconds after its creation). Recent observations also suggest that the cosmological constant (Λ) is not zero and that the net mass-energy content of the universe is dominated by a dark energy and dark matter that have not been characterized scientifically. They differ in their gravitational effects. Dark matter gravitates as ordinary matter does, and thus slows the expansion of the universe; by contrast, dark energy serves to accelerate the universe's expansion.

File information
Filename:266414.jpg
Album name:Earth & Universe
Rating (1 votes):55555
Keywords:#exploring #astronomy #photography #outer #space #universe
Filesize:63 KiB
Date added:May 11, 2010
Dimensions:600 x 309 pixels
Displayed:10 times
URL:displayimage.php?pid=266414
Favorites:Add to Favorites