|
LSD Blotter Paper Art
|
"LSD," writes the chemist Alexander Shulgin, "is an unusually fragile molecule." It is stable for indefinite time if stored as a solid salt or dissolved in water, at low temperature and protected from air and light exposure.
LSD has two labile protons at the tertiary stereogenic C5 and C8 positions, rendering these centres prone to epimerisation. The C8 proton is more labile due to the electron-withdrawing carboxamide attachment, but removal of the chiral proton at the C5 position (which actually was once also an alpha proton of the parent molecule tryptophan) is assisted by the inductively-withdrawing nitrogen and pi electron delocalisation with the indole ring.
LSD also has enamine-type reactivity because of the electron-donating effects of the indole ring. Because of this, chlorine destroys LSD molecules on contact; even though chlorinated tap water typically contains only a slight amount of chlorine, because a typical LSD solution only contains a small amount of LSD, dissolving LSD in tap water is likely to completely eliminate the substance. The double bond between the 8-position and the aromatic ring, being conjugated with the indole ring, is susceptible to nucleophilic attacks by water or alcohol, especially in the presence of light. LSD often converts to "lumi-LSD", which is totally inactive in human beings (to the best of current knowledge).
|
|