|
Snow Drawings
|
When heavy, wet snow with a snow-water equivalent (SWE) ratio of between 6:1 and 12:1 and a weight in excess of 10 pounds per square foot (~50 kg/m2) piles onto trees or electricity lines – particularly if the trees have full leaves or are not adapted to snow – significant damage may occur on a scale usually associated with hurricanes. An avalanche can occur upon a sudden thermal or mechanical impact upon snow that has accumulated on a mountain, which causes the snow to rush downhill en masse. Preceding an avalanche is a phenomenon known as an avalanche wind caused by the approaching avalanche itself, which adds to its destructive potential. Large amounts of snow which accumulate on top of man-made structures can lead to structural failure. During snowmelt, acidic precipitation which previously fell into the snow pack is released, which harms marine life.
Design of structures considering snow load
The design of all structures and buildings use the ground snow load to some extent by professional engineers and designers. In North America, the northern states will be designed to accommodate the live load design contributed by the ground snow load in a pounds per square foot (PSF) loading analysis. (Snow loads are typically treated as 'dead loads' within the ASCE 7-latest edition.) This load is typically the governing design factor on roofs and structural elements exposed to the effects of snow. Closer to the Equator, the snow load becomes less of a factor and snow may or may not be the governing factor. Ground snow in North America is provided by the American Society of Civil Engineers (ASCE7-latest edition) for most jurisdictions.
|
|