|
Sultan Kosen, Tallest Man In The World, 2 Meters 47 Centimeters, Turkey
|
The study of height is known as auxology. Growth has long been recognized as a measure of the health of individuals, hence part of the reasoning for the use of growth charts. For individuals, as indicators of health problems, growth trends are tracked for significant deviations and growth is also monitored for significant deficiency from genetic expectations. Genetics is a major factor in determining the height of individuals, though it is far less influential in regard to populations. Average height is increasingly used as a measure of the health and wellness (standard of living and quality of life) of populations. Attributed as a significant reason for the trend of increasing height in parts of Europe is the egalitarian populations where proper medical care and adequate nutrition are relatively equally distributed. Changes in diet (nutrition) and a general rise in quality of health care and standard of living are the cited factors in the Asian populations. Average height in the United States has remained essentially stagnant since the 1950s even as the racial and ethnic background of residents has shifted. Severe malnutrition is known to cause stunted growth in North Korean, portions of African, certain historical European, and other populations. Diet (in addition to needed nutrients; such things as junk food and attendant health problems such as obesity), exercise, fitness, pollution exposure, sleep patterns, climate (Allen's rule and Bergmann's Rule for example), and even happiness (psychological well-being) are other factors that can affect growth and final height.
Height, like other phenotypic traits, is determined by a combination of genetics and environmental factors. A child's height based on parental heights is subject to regression toward the mean, therefore extremely tall or short parents will likely have correspondingly taller or shorter offspring, but their offspring will also likely be closer to average height than the parents themselves. Genetic potential plus nutrition minus stressors is a basic formula. Humans grow fastest (other than in the womb) as infants and toddlers, rapidly declining from a maximum at birth to roughly age 2, tapering to a slowly declining rate, and then during the pubertal growth spurt, a rapid rise to a second maxima (at around 11-12yrs for female, and 13-14yrs for male), followed by a steady decline to zero. On average, female growth velocity trails off to zero at about 15 years, whereas the male curve continues for approximately 3 more years, going to zero at about 18. These are also critical periods where stressors such as malnutrition (or even severe child neglect) have the greatest effect. Conversely, if conditions are optimal then growth potential is maximized; and also there is catch-up growth – which can be significant – for those experiencing poor conditions when those conditions improve.
Moreover, the health of a mother throughout her life, especially during her critical periods, and of course during pregnancy, has a role. A healthier child and adult develops a body that is better able to provide optimal prenatal conditions. The pregnant mother's health is important as gestation is itself a critical period for an embryo/fetus, though some problems affecting height during this period are resolved by catch-up growth assuming childhood conditions are good. Thus, there is an accumulative generation effect such that nutrition and health over generations influences the height of descendants to varying degrees.
|
|