|
Transit Of Venus Across The Sun
|
There was a good deal of interest in the 2004 transit as scientists attempted to measure the pattern of light dimming as Venus blocked out some of the Sun's light, in order to refine techniques that they hope to use in searching for extrasolar planets. Current methods of looking for planets orbiting other stars only work for a few cases: planets that are very large (Jupiter-like, not Earth-like), whose gravity is strong enough to wobble the star sufficiently for us to detect changes in proper motion or Doppler shift changes in radial velocity; Jupiter or Neptune sized planets very close to their parent star whose transit causes changes in the luminosity of the star; or planets which pass in front of background stars with the planet-parent star separation comparable to the Einstein ring and cause gravitational microlensing. Measuring light intensity during the course of a transit, as the planet blocks out some of the light, is potentially much more sensitive, and might be used to find smaller planets. However, extremely precise measurement is needed: for example, the transit of Venus causes the Sun's light to drop by a mere 0.001 magnitude, and the dimming produced by small extrasolar planets will be similarly tiny.
The 2012 transit provided scientists numerous research opportunities as well, in particular in regard to the study of exoplanets. Research of the 2012 Venus transit includes:
- Measuring dips in a star's brightness caused by a known planet transiting the Sun will help astronomers find exoplanets. Unlike the 2004 Venus transit, the 2012 transit occurred during an active phase of the 11-year activity cycle of the Sun, and it is likely to give astronomers practice in picking up a planet's signal around a "spotty" variable star.
- Measurements made of the apparent diameter of Venus during the transit, and comparison with its known diameter, will give scientists an idea of how to estimate exoplanet sizes.
|
|