trezor.io
Rate this file (Rating : 5 / 5 with 1 votes)
birds defending their young against a fox
trezor.io

Birds Defending Their Young Against A Fox

Compared with other vertebrates, birds have a body plan that shows many unusual adaptations, mostly to facilitate flight.
The skeleton consists of very lightweight bones. They have large air-filled cavities (called pneumatic cavities) which connect with the respiratory system. The skull bones in adults are fused and do not show cranial sutures. The orbits are large and separated by a bony septum. The spine has cervical, thoracic, lumbar and caudal regions with the number of cervical (neck) vertebrae highly variable and especially flexible, but movement is reduced in the anterior thoracic vertebrae and absent in the later vertebrae. The last few are fused with the pelvis to form the synsacrum. The ribs are flattened and the sternum is keeled for the attachment of flight muscles except in the flightless bird orders. The forelimbs are modified into wings.
Like the reptiles, birds are primarily uricotelic, that is, their kidneys extract nitrogenous wastes from their bloodstream and excrete it as uric acid instead of urea or ammonia via the ureters into the intestine. Birds do not have a urinary bladder or external urethral opening and (with exception of the Ostrich) uric acid is excreted along with feces as a semisolid waste. However, birds such as hummingbirds can be facultatively ammonotelic, excreting most of the nitrogenous wastes as ammonia. They also excrete creatine, rather than creatinine like mammals. This material, as well as the output of the intestines, emerges from the bird's cloaca. The cloaca is a multi-purpose opening: waste is expelled through it, birds mate by joining cloaca, and females lay eggs from it. In addition, many species of birds regurgitate pellets. The digestive system of birds is unique, with a crop for storage and a gizzard that contains swallowed stones for grinding food to compensate for the lack of teeth. Most birds are highly adapted for rapid digestion to aid with flight. Some migratory birds have adapted to use protein from many parts of their bodies, including protein from the intestines, as additional energy during migration.
Birds have one of the most complex respiratory systems of all animal groups. Upon inhalation, 75% of the fresh air bypasses the lungs and flows directly into a posterior air sac which extends from the lungs and connects with air spaces in the bones and fills them with air. The other 25% of the air goes directly into the lungs. When the bird exhales, the used air flows out of the lung and the stored fresh air from the posterior air sac is simultaneously forced into the lungs. Thus, a bird's lungs receive a constant supply of fresh air during both inhalation and exhalation. Sound production is achieved using the syrinx, a muscular chamber incorporating multiple tympanic membranes which diverges from the lower end of the trachea. The bird's heart has four chambers and the right aortic arch gives rise to systemic circulation (unlike in the mammals where the left arch is involved). The postcava receives blood from the limbs via the renal portal system. Unlike in mammals, the red blood cells in birds have a nucleus.

File information
Filename:634790.jpg
Album name:Fauna & Flora
Rating (1 votes):55555
Keywords:#birds #defending #their #young #against #fox
Filesize:47 KiB
Date added:Jul 21, 2014
Dimensions:692 x 436 pixels
Displayed:93 times
URL:displayimage.php?pid=634790
Favorites:Add to Favorites