|
Alien Imagination
|
Pure water is useful because it has a neutral pH due to its continued dissociation between hydroxide and hydronium ions. As a result, it can dissolve both positive metallic ions and negative non-metallic ions with equal ability. Furthermore, the fact that organic molecules can be either hydrophobic (repelled by water) or hydrophilic (soluble in water) creates the ability of organic compounds to orient themselves to form water-enclosing membranes. The fact that solid water (ice) is less dense than liquid water (within specific temperature ranges) also means that ice floats, thereby preventing Earth's oceans from slowly freezing. Without this quality, the oceans could have frozen solid during the Snowball Earth episodes. Additionally, the hydrogen bonds between water molecules give it an ability to store energy with evaporation, which upon condensation is released. This helps to moderate the climate, cooling the tropics and warming the poles, helping to maintain the thermodynamic stability needed for life.
Carbon is fundamental to terrestrial life for its immense flexibility in creating covalent chemical bonds with a variety of non-metallic elements, principally nitrogen, oxygen and hydrogen. Carbon dioxide and water together enable the storage of solar energy in sugars, such as glucose. The oxidation of glucose releases biochemical energy needed to fuel all other biochemical reactions.
The ability to form organic acids (–COOH) and amine bases (–NH2) gives rise to the possibility of neutralization dehydrating reactions to build long polymer peptides and catalytic proteins from monomer amino acids, and with phosphates to build not only DNA (the information-storing molecule of inheritance), but also ATP (the principal energy "currency" of cellular life).
Due to their relative abundance and usefulness in sustaining life, many have hypothesized that lifeforms elsewhere in the universe would also utilize these basic materials. However, other elements and solvents could also provide a basis for life. Silicon is most often deemed to be the probable alternative to carbon. Silicon lifeforms are proposed to have a crystalline morphology, and are theorized to be able to exist in high temperatures, such as on planets which are very close to their star. Life forms based in ammonia (rather than water) have also been suggested, though this solution appears less optimal than water.
|
|