|
Nebula Dust
|
The PPN is energized by the central star, causing it to emit strong infrared radiation and become a reflection nebula. Collaminated stellar winds from the central star shape and shock the shell into an axially symmetric form, while producing a fast moving molecular wind. The exact point when a PPN becomes a planetary nebula (PN) is defined by the temperature of the central star. The PPN phase continues until the central star reaches a temperature of 30,000 K, after which is it hot enough to ionize the surrounding gas.
Supernova remnants
A supernova occurs when a high-mass star reaches the end of its life. When nuclear fusion in the core of the star stops, the star collapses. The gas falling inward either rebounds or gets so strongly heated that it expands outwards from the core, thus causing the star to explode. The expanding shell of gas forms a supernova remnant, a special diffuse nebula. Although much of the optical and X-ray emission from supernova remnants originates from ionized gas, a great amount of the radio emission is a form of non-thermal emission called synchrotron emission. This emission originates from high-velocity electrons oscillating within magnetic fields.
|
|