trezor.io
Rate this file (Rating : 5 / 5 with 1 votes)
underwater girl portrait
trezor.io

Underwater Girl Portrait

For solid objects like our bones and muscles, this added pressure is not much of a problem; but it is a problem for any air-filled spaces like the mouth, ears, paranasal sinuses and lungs. This is because the air in those spaces reduces in volume when under pressure and so does not provide those spaces with support from the higher outside pressure. Even at a depth of 8 feet (2.5 m) underwater, an inability to equalize air pressure in the middle ear with outside water pressure can cause pain, and the tympanic membrane can rupture at depths under 10 ft (3 m). The danger of pressure damage is greatest in shallow water because the rate of pressure change is greatest at the surface of the water. For example the pressure increase between the surface and 10 m (33 ft) is 100% (100 kPa to 200 kPa), but the pressure increase from 30 m (100 ft) to 40 m (130 ft) is only 25% (400 kPa to 500 kPa).
Any object immersed in water is provided with a buoyant force that counters the force of gravity, appearing to make the object less heavy. If the overall density of the object exceeds the density of water, the object sinks. If the overall density is less than the density of water, the object rises until it floats on the surface.
With increasing depth underwater, sunlight is absorbed, and the amount of visible light diminishes. Because absorption is greater for long wavelengths (red end of the visible spectrum) than for short wavelengths (blue end of the visible spectrum), the colour spectrum is rapidly altered with increasing depth. White objects at the surface appear bluish underwater, and red objects appear dark, even black. Although light penetration will be less if water is turbid, in the very clear water of the open ocean less than 25% of the surface light reaches a depth of 10 m (33 feet). At 100 m (330 ft) the light present from the sun is about 0.5% of that at the surface.
The euphotic depth is the depth at which light intensity falls to 1% of the value at the surface. This depth is dependent upon water clarity, being only a few meters underwater in a turbid estuary, but may reach 200 meters in the open ocean. At the euphotic depth, plants (such as phytoplankton) have no net energy gain from photosynthesis and thus cannot grow.

File information
Filename:649162.jpg
Album name:Art & Creativity
Rating (1 votes):55555
Keywords:#underwater #girl #portrait
Filesize:33 KiB
Date added:Oct 17, 2014
Dimensions:700 x 504 pixels
Displayed:66 times
URL:displayimage.php?pid=649162
Favorites:Add to Favorites